Bibliographie
[noa, a] 3.1. Cross-validation : evaluating estimator performance.
[noa, b] 3.2. Tuning the hyper-parameters of an estimator.
[noa, c] CS 230 - Pense-bête de réseaux de neurones convolutionnels.
[noa, 2020] (2020). Cross-Validation in Machine Learning : How to Do It Right.
[D’Alessandro and Richard, 2015] D’Alessandro, C. and Richard, G. (2015).Synthèse de la parole à partir du texte.Documents numériques Gestion decontenu.
[Daou et al., ] Daou, A., Pothin, J.-b., Honeine, P., and Bensrhair, A. Amélioration desperformances des réseaux de neurones convolutifs en localisation indoor paraugmentation des données. page 7.
[Delsart, 2011] Delsart, V. (2011). Navigation autonome en environnementdynamique : une approche par déformation de trajectoire. page 176.
[Education, 2020] Education, I. C. (2020). What is Speech Recognition ? | IBM.
[Fulgenzi et al., 2009] Fulgenzi, C., Spalanzani, A., and Laugier, C. (2009).Probabilistic motion planning among moving obstacles following typical motionpatterns. In2009 IEEE/RSJ International Conference on Intelligent Robots andSystems, pages 4027–4033. ISSN : 2153-0866.
[Govea, 2007] Govea, D. A. V. (2007).Incremental Learning for Motion Prediction ofPedestrians and Vehicles. phdthesis, Institut National Polytechnique de Grenoble -INPG.
[Hall, 1996] Hall, E. (1996).The hidden dimension. PhD thesis, Doubleday AnchorBooks. Doubleday.
[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basisfor the Heuristic Determination of Minimum Cost Paths.IEEE Transactions onSystems Science and Cybernetics, 4(2) :100–107. Conference Name : IEEETransactions on Systems Science and Cybernetics.
[Heaton, 2008] Heaton, J. (2008).Introduction to Neural Networks with Java. HeatonResearch, Inc. Google-Books-ID : Swlcw7M4uD8C.
[Hiyadi, 2016] Hiyadi, H. (2016) .Reconnaissance 3D de gestes pour l’interactionhomme-système. Theses, Université Paris-Saclay ; Universitéd’Evry-Val-d’Essonne ; Université Mohammed V de Rabat. Issue : 2016SACLE052.
[Howard et al., 2017] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,Weyand, T., Andreetto, M., and Adam, H. (2017). MobileNets : EfficientConvolutional Neural Networks for Mobile Vision Applications.arXiv :1704.04861**[cs]**. arXiv : 1704.04861.
[Joosse et al., 2014] Joosse, M., Poppe, R., Lohse, M., and Evers, V. (2014). Culturaldifferences in how an engagement-seeking robot should approach a group ofpeople. InCABS ’14.
[Khatib, 1985] Khatib, O. (1985). Real-time obstacle avoidance for manipulators andmobile robots. In1985 IEEE International Conference on Robotics and AutomationProceedings, volume 2, pages 500–505.
[Liu et al., 2019] Liu, L., Ouyang, W., Wang, X., Liu, X., Fieguth, P., Pietikainen, M.,and Chen, J. (2019). Deep Learning for Generic Object Detection : A Survey |SpringerLink.
[Liénard, 1977] Liénard, J.-S. (1977).Les processsus de la communication parlée.Masson edition.
[Lobo et al., 2006] Lobo, J., Marques, L., Dias, J., Nunes, U., and de Almeida, A.(2006). Sensors for mobile robot navigation. pages 50–81.
[Martinez-Gomez and Fraichard, 2009] Martinez-Gomez, L. and Fraichard, T. ( 2009).Collision avoidance in dynamic environments : An ICS-based solution and itscomparative evaluation. In2009 IEEE International Conference on Robotics andAutomation, pages 100–105. ISSN : 1050-4729.
[Minguez and Montano, 2000] Minguez, J. and Montano, L. (2000). Nearnessdiagram navigation (ND) : a new real time collision avoidance approach. InProceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS 2000) (Cat. No.00CH37113), volume 3, pages 2094–2100 vol.3.
[Moras, ] Moras, J. Grilles de perception évidentielles pour la navigation robotique enmilieu urbain. page 198.
[Mosseri and Lang, 2018] Mosseri, I. and Lang, O. (2018). Looking to Listen :Audio-Visual Speech Separation.
[Pagac et al., 1998] Pagac, D., Nebot, E., and Durrant-Whyte, H. (1998). Anevidential approach to map-building for autonomous vehicles.Robotics andAutomation, IEEE Transactions on, 14 :623–629.
[Satake et al., 2009] Satake, S., Kanda, T., Glas, D., Imai, M., Ishiguro, H., andHagita, N. (2009). How to Approach Humans ?-Strategies for Social Robots toInitiate Interaction-. volume 28, pages 109–116.
[Spalanzani, 2015] Spalanzani, A. (2015).Contribution à la navigation autonome enenvironnement dynamique et humain. thesis, MSTII.
[Talon et al., 2018] Talon, C., Dautrême, E., Remy, E., Dirat, Y., and Strat, C. D. L.(2018). Analyse De Différents Algorithmes De Classification Par ApprentissageAutomatique Sur Un Cas D’usage Du Domaine Nucléaire. page 8.
[Tay et al., 2008] Tay, M. K., Mekhnacha, K., Yguel, M., Coué, C., Pradalier, C.,Laugier, C., Fraichard, T., and Bessière, P. (2008). The Bayesian Occupation Filter.In Bessière, P., Laugier, C., and Siegwart, R., editors,Probabilistic Reasoning andDecision Making in Sensory-Motor Systems, volume 46, pages 77–98. SpringerBerlin Heidelberg, Berlin, Heidelberg. ISSN : 1610-7438, 1610-742X Series Title :Springer Tracts in Advanced Robotics.
[Viola and Jones, ] Viola, P. and Jones, M. Robust Real-time Object Detection.page 25.
[Wolpert and Macready, 1997] Wolpert, D. and Macready, W. (1997). No free lunchtheorems for optimization.IEEE Transactions on Evolutionary Computation,1(1) :67–82. Conference Name : IEEE Transactions on Evolutionary Computation.
[Xiao-Long et al., 2017] Xiao-Long, W., Chun-Fu, W., Guo-Dong, L., and Qing-Xie, C.(2017). A robot navigation method based on RFID and QR code in the warehouse.In2017 Chinese Automation Congress (CAC), pages 7837–7840.
[Zhao et al., 2019] Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). ObjectDetection With Deep Learning : A Review.IEEE Transactions on Neural Networksand Learning Systems, 30(11) :3212–3232. Conference Name : IEEE Transactionson Neural Networks and Learning Systems.